## 24. Nonlinear programming

- Overview
- Example: making tires
- Example: largest inscribed polygon
- Example: navigation using ranges


## First things first

The labels nonlinear or nonconvex are not particularly informative or helpful in practice.

- Throughout the course we studied properties of linear constraints, convex quadratics, even MIPs. We can't expect there to be a rigorous science for "everything else".
- It doesn't really make sense to define something as not having a particular property.
- "I'm an ECE professor" is a very informative statement. But using the label "non-(ECE professor)" is virtually meaningless. It could be a student, a horse, a tomato,...


## Important categories

- Continuous vs discrete: As with LPs, the presence of binary or integer constraints is an important feature.
- Smoothness: Are the constraints and the objective function differentiable? twice-differentiable?
- Qualitative shape: Are there many local minima?
- Problem scale: A few variables? hundreds? thousands?

This sort of information is very useful in practice. It helps you decide on an appropriate solution approach.

## This lecture: examples!

- It doesn't make sense to enumerate all the tips and trick for solving nonlinear/nonconvex problems. Too many!
- Instead, we will look at a few specific examples in detail. Each example will highlight some important lessons about dealing with nonconvex/nonlinear problems.


## Example: making tires

- Tires are made by combining rubber, oil, and carbon.
- Tires must have a hardness of between 25 and 35 .
- Tires must have an elasticity of at least 16 .
- Tires must have a tensile strength of at least 12 .
- To make a set of four tires, we require 100 pounds of total product (rubber, oil, and carbon).
- At least 50 pounds of carbon.
- Between 25 and 60 pounds of rubber.


## Example: making tires

- Chemical Engineers tell you that the tensile strength, elasticity, and hardness of tires made of $r$ pounds of rubber, $h$ pounds of oil, and $c$ pounds of carbon are...
- Tensile strength $=12.5-0.1 h-0.001 h^{2}$
- Elasticity $=17+.35 r-0.04 h-0.002 r^{2}$
- Hardness $=$

$$
34+0.1 r+0.06 h-0.3 c+0.01 r h+0.005 h^{2}+0.001 c^{1.95}
$$

- The Purchasing Department says rubber costs $\$ .04 /$ pound, oil costs $\$ .01 /$ pound, and carbon costs $\$ .07 /$ pound.


## Example: making tires

minimize $0.04 r+0.01 h+0.07 c$
$r, h, c$
total: $r+h+c=100$
tensile: $12.5-0.1 h-0.001 h^{2} \geq 12$
elasticity: $\quad 17+.35 r-0.04 h-0.002 r^{2} \geq 16$
hardness: $\quad 25 \leq 34+0.1 r+0.06 h-0.3 c$

$$
+0.01 r h+0.005 h^{2}+0.001 c^{1.95} \leq 35
$$

$$
25 \leq r \leq 60, \quad h \geq 0, \quad c \geq 50
$$

- Problem is smooth and continuous. Julia: Tires.ipynb
- Fairly typical of something you might encounter in practice.

Can we simplify it? Can we learn something useful?

## Example: making tires

minimize $0.04 r+0.01 h+0.07 c$
$r, h, c$
total: $r+h+c=100$
tensile: $12.5-0.1 h-0.001 h^{2} \geq 12$
elasticity: $\quad 17+.35 r-0.04 h-0.002 r^{2} \geq 16$
hardness: $25 \leq 34+0.1 r+0.06 h-0.3 c$

$$
+0.01 r h+0.005 h^{2}+0.001 c^{1.95} \leq 35
$$

$$
25 \leq r \leq 60, \quad h \geq 0, \quad c \geq 50
$$

- Optimal solution is: $\left(r_{\star}, h_{\star}, c_{\star}\right)=(45.23,4.77,50)$.
- Only tensile constraint is tight!
- Does this mean elasticity and hardness don't matter?


## Example: making tires

minimize $0.04 r+0.01 h+0.07 c$
$r, h, c$
total: $r+h+c=100$
tensile: $\quad 12.5-0.1 h-0.001 h^{2} \geq 12$
elasticity: $17+.35 r-0.04 h-0.002 r^{2} \geq 16$
hardness: $25 \leq 34+0.1 r+0.06 h-0.3 c$

$$
\begin{aligned}
& \quad+0.01 r h+0.005 h^{2}+0.001 c^{1.95} \leq 35 \\
& 25 \leq r \leq 60, \quad h \geq 0, \quad c \geq 50
\end{aligned}
$$

- Tensile constraint only depends on $h$.
- Can we simplify it?


## Example: making tires

Tensile constraint: $12.5-0.1 h-0.001 h^{2} \geq 12$


- Since $h \geq 0$, only a small range of $h$ is admissible
- If we solve for equality (quadratic formula), the positive solution is $h=4.77$

We can replace the tensile constraint by $0 \leq h \leq 4.77$.

## Example: making tires

minimize $0.04 r+0.01 h+0.07 c$
$r, h, c$
total: $r+h+c=100$
tensile: $0 \leq h \leq 4.77$
elasticity: $17+.35 r-0.04 h-0.002 r^{2} \geq 16$
hardness: $\quad 25 \leq 34+0.1 r+0.06 h-0.3 c$

$$
\begin{aligned}
& \quad+0.01 r h+0.005 h^{2}+0.001 c^{1.95} \leq 35 \\
& 25 \leq r \leq 60, \quad c \geq 50
\end{aligned}
$$

- We can't independently choose $r, h, c \ldots$
- Let's eliminate $r$. Replace $r$ by $(100-h-c)$.


## Example: making tires

Objective function: $0.04 r+0.01 h+0.07 c$

$$
\begin{aligned}
& =0.04(100-h-c)+0.01 h+0.07 c \\
& =4-0.03 h+0.03 c
\end{aligned}
$$

Elasticity and hardness: (similar substitutions)
$32+0.05 c-0.002 c^{2}+0.01 h-0.004 c h-0.002 h^{2} \geq 16$
$25 \leq 44+0.96 h-0.4 c-0.01 c h-0.005 h^{2}+0.001 c^{1.95} \leq 35$
Original bounds: $25 \leq r \leq 60$ and $c \geq 50$.

$$
\begin{aligned}
& \Longleftrightarrow 25 \leq 100-h-c \leq 60 \text { and } c \geq 50 \\
& \Longleftrightarrow 40 \leq h+c \leq 75 \text { and } c \geq 50 \\
& \Longleftrightarrow 50 \leq h+c \leq 75 \text { and } c \geq 50
\end{aligned}
$$

## Example: making tires

minimize $\quad 4-0.03 h+0.03 c$

$$
h, c
$$

tensile: $\quad 0 \leq h \leq 4.77$
bound: $50 \leq h+c \leq 75, \quad c \geq 50$
elasticity: $32+0.05 c-0.002 c^{2}+0.01 h$

$$
-0.004 c h-0.002 h^{2} \geq 16
$$

hardness: $\quad 25 \leq 44+0.96 h-0.4 c-0.01 c h$

$$
-0.005 h^{2}+0.001 c^{1.95} \leq 35
$$

- tensile constraint is now linear
- elasticity constraint is a convex quadratic
- Only two variables! Let's draw a picture...


## Example: making tires



- Feasible region is quite small. Let's zoom in...


## Example: making tires



- Objective is to minimize $4-0.03 h+0.03 c$
- Solution doesn't involve hardness or elasticity constraints.


## Example: making tires



- Objective function is: $\left(p_{h}-p_{r}\right) h+\left(p_{c}-p_{r}\right) c$ where $p_{i}$ is the price of $i$.
- Normal vector for objective:

$$
n=\left[\begin{array}{l}
p_{h}-p_{r} \\
p_{c}-p_{r}
\end{array}\right]
$$

## Simple solution:

- Is rubber the cheapest ingredient? if so, choose C.
- Otherwise: is rubber the most expensive? if so, choose $\mathbf{A}$.
- Otherwise: is oil cheaper than carbon? if so, choose D.
- Is rubber cheaper than the avg price of carbon and oil? if so, choose B. Otherwise, choose A.


## Making tires, what did we learn?

- Sometimes constraints that look complicated aren't actually complicated.
- Sometimes a constraint won't matter. You can examine dual variables to quickly check which constraints are active.
- If you can draw a picture, draw a picture!
- Complicated-looking problems can have simple solutions.


## Example: largest inscribed polygon

What is the polygon ( $n$ sides) of maximal area that can be completely contained inside a circle of radius 1 ?

- A pretty famous problem. The solution is a regular polygon. All sides have equal length with vertices on the unit circle.
- How can we solve this using optimization?


## Example: largest inscribed polygon



## First model

Express the vertices of the polygon in polar coordinates $\left(r_{i}, \theta_{i}\right)$ where the origin is the center of the circle and angles are measured with respect to $(1,0)$.

- What are the constraints?
- How do we compute the area?
- We must have $r_{i} \leq 1$ to ensure all points are inscribed.
- Calculate the area one triangle at a time. For example, triangle (OAB) has area $\frac{1}{2} r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)$.
- Is this enough? Let's see... Polygon.ipynb


## Example: largest inscribed polygon

Model


## Result

Solution is incorrect!

- Adding $\theta_{i} \geq 0$ doesn't help.
- Adding $\theta_{i} \leq 2 \pi$ doesn't help.
- Adding $\theta_{1}=0$ doesn't help.
- can obtain a single-point solution
- can obtain polygons that cross each other
- can obtain other suboptimal polygons

The reason is local maxima. More on this later...

## Example: largest inscribed polygon

## Model 1 finalized:

By assigning an order to the angles, we obtain the model:

$$
\begin{aligned}
\underset{r, \theta}{\operatorname{aaximize}} & \frac{1}{2} \sum_{i=1}^{n} r_{i} r_{i+1} \sin \left(\theta_{i+1}-\theta_{i}\right) \\
\text { subject to: } & 0 \leq r_{i} \leq 1 \\
& 0=\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{n} \leq 2 \pi
\end{aligned}
$$

This model produces the correct solution!

## Example: largest inscribed polygon



## Second model

This time use relative angles. $\alpha_{i}$ is the angle between a pair of adjacent edges. This automatically encodes ordering!

- What are the constraints?
- How do we compute the area?
- We must have $r_{i} \leq 1$ to ensure all points are inscribed.
- Angles must sum to the full circle: $\alpha_{1}+\cdots+\alpha_{n}=2 \pi$.
- Calculate the area one triangle at a time. For example, triangle $(\mathrm{OAB})$ has area $\frac{1}{2} r_{1} r_{2} \sin \left(\alpha_{i}\right)$.


## Example: largest inscribed polygon

## Model 2 finalized:

$$
\begin{aligned}
\underset{r, \alpha}{\operatorname{maximize}} & \frac{1}{2} \sum_{i=1}^{n} r_{i} r_{i+1} \sin \left(\alpha_{i}\right) \\
\text { subject to: } & 0 \leq r_{i} \leq 1 \\
& \alpha_{1}+\cdots+\alpha_{n}=2 \pi \\
& \alpha_{i} \geq 0
\end{aligned}
$$

This model produces the correct solution as well!

## Example: largest inscribed polygon



## Third model

This time use cartesian coordinates.
Each point is described by $\left(x_{i}, y_{i}\right)$.

- What are the constraints?
- How do we compute the area?
- We must have $x_{i}^{2}+y_{i}^{2} \leq 1$ to ensure all points are inscribed.
- Calculate the area one triangle at a time. For example, triangle (OAB) has area $\frac{1}{2}\left|x_{1} y_{2}-y_{1} x_{2}\right|$.


## Example: largest inscribed polygon

## Model

$\begin{aligned} \max _{x, y} & \frac{1}{2} \sum_{i=1}^{n}\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right) \\ \text { s.t. } & x_{i}^{2}+y_{i}^{2} \leq 1\end{aligned}$

## Result

Solution is zero...

- Changing initial values sometimes produces the correct answer.
- Fails frequently for larger $n$.

Reasons for failure

- again we have multiple local minima.
- area formula only works if vertices are consecutive!
- can fix this by ensuring $x_{i} y_{i+1}-y_{i} x_{i+1}>0$ always holds


## Example: largest inscribed polygon

## Model 3 finalized:

$$
\begin{aligned}
\underset{x, y}{\operatorname{maximize}} & \frac{1}{2} \sum_{i=1}^{n}\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right) \\
\text { subject to: } & x_{i}^{2}+y_{i}^{2} \leq 1 \\
& x_{i} y_{i+1}-y_{i} x_{i+1} \geq 0 \quad \forall i \text { (cyclic) }
\end{aligned}
$$

This model produces the correct solution provided we don't initialize the solver at zero.

## Polygons, what did we learn?

- The choice of variables matters!
- Constraints can be added to remove unwanted symmetries or to avoid pathological cases (in the mathematical sense). e.g. our area formula fails if the vertices aren't consecutive.
- Local maxima/minima (extrema) are a problem!
- Can avoid local extrema by carefully choosing initial values. Choosing random values can work too.


## Local minima

Mathematical definition: A point $\tilde{x}$ is a local minimum of $f$ if there exists some $R>0$ such that $f(\tilde{x}) \leq f(x)$ whenever $x$ satisfies $\|x-\tilde{x}\| \leq R$.

Practical definition: A point $\tilde{x}$ is a local minimum of $f$ if your solver thinks the answer is $\tilde{x}$ but it really isn't.

These definitions are not equivalent! Solvers will often claim victory when the point found isn't a minimum at all!

Example: $\left\{\begin{aligned} \text { minimize } & -x^{4} \\ \text { subject to: } & |x| \leq 1\end{aligned}\right\}$

## Local minima

The solver will usually identify a local minimum if:

- changing any of the variables independently doesn't improve the objective. For example:

$$
\begin{aligned}
\max _{r, \theta} & \frac{1}{2} \sum_{i=1}^{n} r_{i} r_{i+1} \sin \left(\theta_{i+1}-\theta_{i}\right) \\
\text { s.t. } & 0 \leq r_{i} \leq 1
\end{aligned}
$$

- If we start with all variables zero, the objective remains zero if we change a single $r_{i}$ or $\theta_{i}$.
- If all $r_{i}$ are the same and all $\theta_{i}$ are the same, changing any of the $r_{i}$ has no effect. Also, changing a single $\theta_{i}$ creates a cancellation so still no effect.


## Local minima

The solver will usually identify a local minimum if:

- all partial derivatives are zero at the particular point.

For example: if $f(x, y)$ is the objective and $(\tilde{x}, \tilde{y})$ satisfies:

$$
\frac{\partial f}{\partial x}(\tilde{x}, \tilde{y})=\frac{\partial f}{\partial y}(\tilde{x}, \tilde{y})=0
$$

This was the case with the $-x^{4}$ example. It also happens with $-x^{2}$ and $x^{3}$, which is actually an inflection point.

Why does this happen? It has to do with how solvers work. We'll learn more about this in the next lecture.

## Example: navigation using ranges



- There is a set of $n$ beacons with known positions $\left(x_{i}, y_{i}\right)$.
- We can measure our distance to each of the beacons. The measurements will be noisy.
- We would like to find our true position ( $u_{\star}, v_{\star}$ ) based on the beacon distances.


## Example: navigation using ranges

- The distance we measure to beacon $i$ will be given by:

$$
\rho_{i}=\sqrt{\left(x_{i}-u_{\star}\right)^{2}+\left(y_{i}-v_{\star}\right)^{2}}+w_{i}
$$

These are the measurements ( $w_{i}$ is noise).

- Suppose we think we are at $(u, v)$. We can compare the actual measurements to the hypothetical expected measurements by using a squared difference:

$$
r(u, v)=\sum_{i=1}^{n}\left(\sqrt{\left(x_{i}-u\right)^{2}+\left(y_{i}-v\right)^{2}}-\rho_{i}\right)^{2}
$$

- Minimizing $r$ is called nonlinear least squares. If the measurements are linear $y_{i}=a_{i}^{\top} x+w_{i}$ then $r$ would simply be $\|A x-y\|^{2}$, which is the conventional least-squares cost.


## Example: navigation using ranges

$$
\underset{u, v}{\operatorname{minimize}} \quad r(u, v)=\sum_{i=1}^{n}\left(\sqrt{\left(x_{i}-u\right)^{2}+\left(y_{i}-v\right)^{2}}-\rho_{i}\right)^{2}
$$



- In the noise-free measurement case, we have two local minima: $(1,1)$ and $(2.91,2.32)$.
- There are three local maxima.
- In the noisy measurement case, we will never get an error of zero, so it's difficult to know when we've found the true position!


## Example: navigation using ranges



- Julia code: Navigation.ipynb
- Changing start values for the solver affects which minimum value is found.
- In the noisy measurement case, we will never get an error of zero, so it's difficult to know when we've found the true position!
- Solver struggles with finding the local maxima for this function. This is because the derivative of $r(u, v)$ is not defined at the beacon locations (where some of the maxima lie).
- Example: compare minimizing $\sqrt{x^{2}+y^{2}}$ versus $\frac{1}{2}\left(x^{2}+y^{2}\right)$.


## Difficult derivatives

- Consider $f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$.
- A paraboloid with a smooth minimum.
- Easy to optimize because $\|\nabla f\|$ tells you how close you are. $\|\nabla f\|=\sqrt{x^{2}+y^{2}}$. Small gradient $\Longleftrightarrow$ close to optimality.
- Consider $f(x, y)=\sqrt{x^{2}+y^{2}}$.
- A cone with a sharp minimum.
- Difficult to optimize because $\|\nabla f\|$ is not informative. $\|\nabla f\|=1$. Hard to gauge distance to optimality.



## Navigation \& NLLS, what did we learn?

- Standard least squares is a convex problem. So there is a single local minimum which is also a global minimum (in the overdetermined case).
- In nonlinear least squares (NLLS), there may be multiple local and global minima.
- The solver may still struggle in certain cases, and this is related to gradients (more on this later).
- Again: draw a picture, it helps!

