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First things first

The labels nonlinear or nonconvex are not particularly
informative or helpful in practice.

� Throughout the course we studied properties of linear
constraints, convex quadratics, even MIPs. We can’t
expect there to be a rigorous science for “everything else”.

� It doesn’t really make sense to define something as not
having a particular property.

� “I’m an ECE professor” is a very informative statement.
But using the label “non-(ECE professor)” is virtually
meaningless. It could be a student, a horse, a tomato,...

24-2



Important categories

� Continuous vs discrete: As with LPs, the presence of
binary or integer constraints is an important feature.

� Smoothness: Are the constraints and the objective
function differentiable? twice-differentiable?

� Qualitative shape: Are there many local minima?

� Problem scale: A few variables? hundreds? thousands?

This sort of information is very useful in practice. It helps
you decide on an appropriate solution approach.
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This lecture: examples!

� It doesn’t make sense to enumerate all the tips and trick
for solving nonlinear/nonconvex problems. Too many!

� Instead, we will look at a few specific examples in detail.
Each example will highlight some important lessons about
dealing with nonconvex/nonlinear problems.
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Example: making tires

� Tires are made by combining rubber, oil, and carbon.

� Tires must have a hardness of between 25 and 35.

� Tires must have an elasticity of at least 16.

� Tires must have a tensile strength of at least 12.

� To make a set of four tires, we require 100 pounds of total
product (rubber, oil, and carbon).

I At least 50 pounds of carbon.

I Between 25 and 60 pounds of rubber.
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Example: making tires

� Chemical Engineers tell you that the tensile strength,
elasticity, and hardness of tires made of r pounds of rubber,
h pounds of oil, and c pounds of carbon are...

I Tensile strength = 12.5− 0.1h − 0.001h2

I Elasticity = 17 + .35r − 0.04h − 0.002r2

I Hardness =
34 + 0.1r + 0.06h − 0.3c + 0.01rh + 0.005h2 + 0.001c1.95

� The Purchasing Department says rubber costs $.04/pound,
oil costs $.01/pound, and carbon costs $.07/pound.
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Example: making tires

minimize
r ,h,c

0.04r + 0.01h + 0.07c

total: r + h + c = 100

tensile: 12.5− 0.1h − 0.001h2 ≥ 12

elasticity: 17 + .35r − 0.04h − 0.002r 2 ≥ 16

hardness: 25 ≤ 34 + 0.1r + 0.06h − 0.3c

+ 0.01rh + 0.005h2 + 0.001c1.95 ≤ 35

25 ≤ r ≤ 60, h ≥ 0, c ≥ 50

� Problem is smooth and continuous. Julia: Tires.ipynb

� Fairly typical of something you might encounter in practice.
Can we simplify it? Can we learn something useful?
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Example: making tires

minimize
r ,h,c

0.04r + 0.01h + 0.07c

total: r + h + c = 100

tensile: 12.5− 0.1h − 0.001h2 ≥ 12

elasticity: 17 + .35r − 0.04h − 0.002r 2 ≥ 16

hardness: 25 ≤ 34 + 0.1r + 0.06h − 0.3c

+ 0.01rh + 0.005h2 + 0.001c1.95 ≤ 35

25 ≤ r ≤ 60, h ≥ 0, c ≥ 50

� Optimal solution is: (r?, h?, c?) = (45.23, 4.77, 50).

� Only tensile constraint is tight!

� Does this mean elasticity and hardness don’t matter?
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Example: making tires

minimize
r ,h,c

0.04r + 0.01h + 0.07c

total: r + h + c = 100

tensile: 12.5− 0.1h − 0.001h2 ≥ 12

elasticity: 17 + .35r − 0.04h − 0.002r 2 ≥ 16

hardness: 25 ≤ 34 + 0.1r + 0.06h − 0.3c

+ 0.01rh + 0.005h2 + 0.001c1.95 ≤ 35

25 ≤ r ≤ 60, h ≥ 0, c ≥ 50

� Tensile constraint only depends on h.

� Can we simplify it?

24-9



Example: making tires

Tensile constraint: 12.5− 0.1h − 0.001h2 ≥ 12

-150 -100 -50 0 50
h

6
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12

14

Tensile strength
� Since h ≥ 0, only a small

range of h is admissible

� If we solve for equality
(quadratic formula), the
positive solution is h = 4.77

We can replace the tensile constraint by 0 ≤ h ≤ 4.77.
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Example: making tires

minimize
r ,h,c

0.04r + 0.01h + 0.07c

total: r + h + c = 100

tensile: 0 ≤ h ≤ 4.77

elasticity: 17 + .35r − 0.04h − 0.002r 2 ≥ 16

hardness: 25 ≤ 34 + 0.1r + 0.06h − 0.3c

+ 0.01rh + 0.005h2 + 0.001c1.95 ≤ 35

25 ≤ r ≤ 60, c ≥ 50

� We can’t independently choose r , h, c ...

� Let’s eliminate r . Replace r by (100− h − c).
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Example: making tires

Objective function: 0.04r + 0.01h + 0.07c

= 0.04(100− h − c) + 0.01h + 0.07c

= 4− 0.03h + 0.03c

Elasticity and hardness: (similar substitutions)

32 + 0.05c − 0.002c2 + 0.01h − 0.004ch − 0.002h2 ≥ 16

25 ≤ 44 + 0.96h − 0.4c − 0.01ch − 0.005h2 + 0.001c1.95 ≤ 35

Original bounds: 25 ≤ r ≤ 60 and c ≥ 50.

⇐⇒ 25 ≤ 100− h − c ≤ 60 and c ≥ 50

⇐⇒ 40 ≤ h + c ≤ 75 and c ≥ 50

⇐⇒ 50 ≤ h + c ≤ 75 and c ≥ 50
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Example: making tires

minimize
h,c

4− 0.03h + 0.03c

tensile: 0 ≤ h ≤ 4.77

bound: 50 ≤ h + c ≤ 75, c ≥ 50

elasticity: 32 + 0.05c − 0.002c2 + 0.01h

− 0.004ch − 0.002h2 ≥ 16

hardness: 25 ≤ 44 + 0.96h − 0.4c − 0.01ch

− 0.005h2 + 0.001c1.95 ≤ 35

� tensile constraint is now linear

� elasticity constraint is a convex quadratic

� Only two variables! Let’s draw a picture...
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Example: making tires

0 20 40 60 80
oil (h)20

40

60

80

100

carbon (c)

lin. constr.
elasticity
hardness

� Feasible region is quite small. Let’s zoom in...
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Example: making tires

0 1 2 3 4 5 6
oil (h)46

48

50

52

54

56

58

60
carbon (c)

� Objective is to minimize 4− 0.03h + 0.03c

� Solution doesn’t involve hardness or elasticity constraints.
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Example: making tires

A

B

C
D

0 1 2 3 4 5 6
oil (h)46

48
50
52
54
56
58
60

carbon (c)
� Objective function is:

(ph − pr )h + (pc − pr )c
where pi is the price of i .

� Normal vector for objective:

n =

[
ph − pr
pc − pr

]
Simple solution:

� Is rubber the cheapest ingredient? if so, choose C.

� Otherwise: is rubber the most expensive? if so, choose A.

� Otherwise: is oil cheaper than carbon? if so, choose D.

� Is rubber cheaper than the avg price of carbon and oil?
if so, choose B. Otherwise, choose A.
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Making tires, what did we learn?

� Sometimes constraints that look complicated aren’t
actually complicated.

� Sometimes a constraint won’t matter. You can examine
dual variables to quickly check which constraints are active.

� If you can draw a picture, draw a picture!

� Complicated-looking problems can have simple solutions.
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Example: largest inscribed polygon

What is the polygon (n sides) of maximal area that can be
completely contained inside a circle of radius 1?

� A pretty famous problem. The solution is a regular polygon.
All sides have equal length with vertices on the unit circle.

� How can we solve this using optimization?
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Example: largest inscribed polygon

r1
A

r2

B

θ1

θ2

O

First model

Express the vertices of the polygon in
polar coordinates (ri , θi) where the origin
is the center of the circle and angles are
measured with respect to (1, 0).

� What are the constraints?

� How do we compute the area?

� We must have ri ≤ 1 to ensure all points are inscribed.

� Calculate the area one triangle at a time. For example,
triangle (OAB) has area 1

2
r1r2 sin(θ2 − θ1).

� Is this enough? Let’s see... Polygon.ipynb
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Example: largest inscribed polygon

Model Result

max
r ,θ

1

2

n∑
i=1

ri ri+1 sin(θi+1 − θi)

s.t. 0 ≤ ri ≤ 1

Solution is incorrect!

� Adding θi ≥ 0 doesn’t help.

� Adding θi ≤ 2π doesn’t help.

� Adding θ1 = 0 doesn’t help.

� can obtain a single-point solution

� can obtain polygons that cross each other

� can obtain other suboptimal polygons

The reason is local maxima. More on this later...
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Example: largest inscribed polygon

Model 1 finalized:

By assigning an order to the angles, we obtain the model:

maximize
r ,θ

1

2

n∑
i=1

ri ri+1 sin(θi+1 − θi)

subject to: 0 ≤ ri ≤ 1

0 = θ1 ≤ θ2 ≤ · · · ≤ θn ≤ 2π

This model produces the correct solution!
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Example: largest inscribed polygon

r1
A

r2

B

r3 α1
α2

O

Second model

This time use relative angles. αi is the
angle between a pair of adjacent edges.
This automatically encodes ordering!

� What are the constraints?

� How do we compute the area?

� We must have ri ≤ 1 to ensure all points are inscribed.

� Angles must sum to the full circle: α1 + · · ·+ αn = 2π.

� Calculate the area one triangle at a time. For example,
triangle (OAB) has area 1

2
r1r2 sin(αi).
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Example: largest inscribed polygon

Model 2 finalized:

maximize
r ,α

1

2

n∑
i=1

ri ri+1 sin(αi)

subject to: 0 ≤ ri ≤ 1

α1 + · · ·+ αn = 2π

αi ≥ 0

This model produces the correct solution as well!
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Example: largest inscribed polygon

(x1, y1)
A

(x2, y2)
B

O

Third model

This time use cartesian coordinates.
Each point is described by (xi , yi).

� What are the constraints?

� How do we compute the area?

� We must have x2i + y 2
i ≤ 1 to ensure all points are inscribed.

� Calculate the area one triangle at a time. For example,
triangle (OAB) has area 1

2
|x1y2 − y1x2|.
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Example: largest inscribed polygon

Model Result

max
x ,y

1

2

n∑
i=1

(xiyi+1 − yixi+1)

s.t. x2i + y 2
i ≤ 1

Solution is zero...

� Changing initial values
sometimes produces the
correct answer.

� Fails frequently for larger n.

Reasons for failure

� again we have multiple local minima.

� area formula only works if vertices are consecutive!

� can fix this by ensuring xiyi+1 − yixi+1 > 0 always holds
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Example: largest inscribed polygon

Model 3 finalized:

maximize
x ,y

1

2

n∑
i=1

(xiyi+1 − yixi+1)

subject to: x2i + y 2
i ≤ 1

xiyi+1 − yixi+1 ≥ 0 ∀i (cyclic)

This model produces the correct solution provided we don’t
initialize the solver at zero.
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Polygons, what did we learn?

� The choice of variables matters!

� Constraints can be added to remove unwanted symmetries
or to avoid pathological cases (in the mathematical sense).
e.g. our area formula fails if the vertices aren’t consecutive.

� Local maxima/minima (extrema) are a problem!

� Can avoid local extrema by carefully choosing initial values.
Choosing random values can work too.
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Local minima

Mathematical definition: A point x̃ is a local minimum of f
if there exists some R > 0 such that f (x̃) ≤ f (x) whenever x
satisfies ‖x − x̃‖ ≤ R .

Practical definition: A point x̃ is a local minimum of f if
your solver thinks the answer is x̃ but it really isn’t.

These definitions are not equivalent! Solvers will often claim
victory when the point found isn’t a minimum at all!

Example:

{
minimize − x4

subject to: |x | ≤ 1

}
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Local minima

The solver will usually identify a local minimum if:

� changing any of the variables independently doesn’t
improve the objective. For example:

max
r ,θ

1

2

n∑
i=1

ri ri+1 sin(θi+1 − θi)

s.t. 0 ≤ ri ≤ 1

I If we start with all variables zero, the objective remains zero
if we change a single ri or θi .

I If all ri are the same and all θi are the same, changing any
of the ri has no effect. Also, changing a single θi creates a
cancellation so still no effect.
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Local minima

The solver will usually identify a local minimum if:

� all partial derivatives are zero at the particular point.
For example: if f (x , y) is the objective and (x̃ , ỹ) satisfies:

∂f

∂x
(x̃ , ỹ) =

∂f

∂y
(x̃ , ỹ) = 0

This was the case with the −x4 example. It also happens
with −x2 and x3, which is actually an inflection point.

Why does this happen? It has to do with how solvers work.
We’ll learn more about this in the next lecture.
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Example: navigation using ranges

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0.0
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1.0
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2.0

2.5

3.0

3.5

y

true position
beacons � There is a set of n beacons

with known positions (xi , yi ).

� We can measure our distance
to each of the beacons. The
measurements will be noisy.

� We would like to find our true
position (u?, v?) based on the
beacon distances.

Example by L. Vandenberghe, UCLA, EE133A 24-31



Example: navigation using ranges

� The distance we measure to beacon i will be given by:

ρi =
√

(xi − u?)2 + (yi − v?)2 + wi

These are the measurements (wi is noise).

� Suppose we think we are at (u, v). We can compare the
actual measurements to the hypothetical expected
measurements by using a squared difference:

r(u, v) =
n∑

i=1

(√
(xi − u)2 + (yi − v)2 − ρi

)2
� Minimizing r is called nonlinear least squares. If the

measurements are linear yi = aTi x + wi then r would simply
be ‖Ax − y‖2, which is the conventional least-squares cost.
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Example: navigation using ranges

minimize
u,v

r(u, v) =
n∑

i=1

(√
(xi − u)2 + (yi − v)2 − ρi

)2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
u
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0.5

1.0

1.5

2.0

2.5

3.0

3.5

v

� In the noise-free measurement
case, we have two local minima:
(1, 1) and (2.91, 2.32).

� There are three local maxima.

� In the noisy measurement case,
we will never get an error of zero,
so it’s difficult to know when
we’ve found the true position!

Example by L. Vandenberghe, UCLA, EE133A 24-33



Example: navigation using ranges

Example by L. Vandenberghe, UCLA, EE133A
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� Julia code: Navigation.ipynb

� Changing start values for the
solver affects which minimum
value is found.

� In the noisy measurement case,
we will never get an error of zero,
so it’s difficult to know when
we’ve found the true position!

� Solver struggles with finding the local maxima for this
function. This is because the derivative of r(u, v) is not defined
at the beacon locations (where some of the maxima lie).

� Example: compare minimizing
√
x2 + y2 versus 1

2(x2 + y2).
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Difficult derivatives

� Consider f (x , y) = 1
2(x2 + y2).

� A paraboloid with a smooth minimum.

� Easy to optimize because ‖∇f ‖ tells you
how close you are. ‖∇f ‖ =

√
x2 + y2.

Small gradient ⇐⇒ close to optimality.

� Consider f (x , y) =
√
x2 + y2.

� A cone with a sharp minimum.

� Difficult to optimize because ‖∇f ‖ is
not informative. ‖∇f ‖ = 1. Hard to
gauge distance to optimality.

Solvers use gradient information! More on this next time...
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Navigation & NLLS, what did we learn?

� Standard least squares is a convex problem. So there is a
single local minimum which is also a global minimum
(in the overdetermined case).

� In nonlinear least squares (NLLS), there may be multiple
local and global minima.

� The solver may still struggle in certain cases, and this is
related to gradients (more on this later).

� Again: draw a picture, it helps!
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